A Galois Field Arithmetic Library

Pakize SANAL, MSc Candidate

Supervisor: Asst. Prof. Hiiseyin HISIL

Yasar University
Faculty of Engineering
Department of Computer Engineering

June 5, 2017

Outline

Content of the bachelor thesis

Studied assembly optimizations

Test results

Content of the bachelor thesis
A Galois Field Arithmetic Library

+7 —, k.

Constant time AMD64 Assembly.

Extensive validation and performance tests.

vV v .vv

GF (2% — c) where w = 127,128,255,256 and GF (212" — 1).

1. By scheduling of the operations

Four digits schoolbook vs. one level recursive schoolbook multiplication vs. ...

SCE [RSCE | OSCEB [| @ [@ [@]
26— | 38 - - [] o] b] b]
X

agp + by
N

IS}
o

1. By scheduling of the operations

Four digits schoolbook vs. one level recursive schoolbook multiplication vs. ...

SCB | RSCB | OSCB
| 256 _¢ 38 35 -
[s [= [= [=
‘ b3 H by H by H by
x
as - by H as - by H ay - by H ag - by
T T
T ——
+
a-b

1. By scheduling of the operations

Four digits schoolbook vs. one level recursive schoolbook multiplication vs. ...

SCB | RSCB | OSCB
| 2%5-c[38 | 35 37
(" [= [=] ®
N ‘ by H by H by H by
as - b H as - by H ap - by H ag - by
asz - by H as - by H aj by ‘
as - by H as - by H ag - by ‘
as - by az - by
ay - bs ag - by
ay - by
+

1. By scheduling of the operations

One level Karatsuba multiplication vs. one level schoolbook multiplication

Karatsuba | SCB
217 _ 1 12 6 aq H ag
2127 _ ¢ 17 13
218 _ ¢ 12 10
by H bo
X
ay - bl H ag - bo
D‘ (a1 + ag) - (b1 + bo)
aj - b1 |
ap - bo -
+

2. By making optimization

Register optimization

by

ot I @

) I a1 by

ay by

ag - by

0 I

o

az by

by |

ay by

ay by

a b

1 // ...
2 movq 8*0(%r8), Yrax
3 mulq 8*0(7%r9)
4 movq %rax, %rbx
5 movq %rdx, %rsi
6 movq 8%1(%r8), Yrax
7 mulq 8*1(%r9)
8 movq Y%rax, %rl0
9 movq %rdx, Y%riil
10 movq 8%1(%r8), Yrax
11 mulq 8*0(%r9)
12 addq Yrax, %rsi
13 adcq Yrdx, %ri0
14 adcq $0, %riil
15 movq 8%0(%r8), Yrax
16 mulq 8*1(%r9)
17 addq Yrax, jrsi
18 adcq Yrdx, %ri0
19 adcq $0, Jrii
20 movq %rbx, 8%0(%rdi)
21 movq %rsi, 8%1(%rdi)
22 /...
Listing 1 : < GF(2%® —¢), *>

3. By using special instructions

The instruction cmovxx

Conditional Move

// ...

movq %ri12, Yrax
mulq %rié4

movq $0, %rbp
cmp $0, %ri3
cmovz Yrbp, Yrid
cmp $0, %rib
cmovz Yrbp, %ri2
andq %ri13, %rib
addq %ri2, Yrdx
adcq $0, %rbp
addq Y%ri4, Yrdx
adcq %ri15, %rbp
/...

if n3 = 0 then
| Return 0.
else

| Return ri4.

end

if 1o = 0 then
| Return 0.
else
| Return rs.
end

Listing 2 : < GF(2'*®

T14

a1z - b1y ‘

713-T'14
12 T15

L L]

a-b

3. By using special instructions

The instruction btxx

Bit Test and Reset

1 // ...

2 /*r11, r10, r9, r8x*/

3 shlq $1, %rit

4 btrq $63, %rio0

5 adcq $0, %riil l ™ H o H Ty

6 shlq $1, %ri0

7 btrq $63, %r9 [| " I

8 adcq $0, %ri0 I N I -

9 +

10 addq %r8, %rio \ m I o

11 adcq %r9, %rit

12

13 btrq $63, %rii 1 | =

14 adcq $0, %rio +

e s e T —
Listing 3 :

< GF(2"" —1), *>

Faster compact Diffie-Hellman: Endomorphisms on the x—line
C. Costello, H. Hisil, and B. Smith

3. By using special instructions

Comparing with the MPFQ library < GF(2'%" — 1), * >
45 instructions, 9 clock cycles

33 instructions, 6 clock cyles

/7. ..
/*xri1l
shlq
btrq
adcq
shlq
btrq
adcq

addq
adcq

btrq
adcq
adcq
/7. ..

, rli0,

$1,
$63,
$0,
$1,
$63,
$0,

%r8,
%r9,

$63,
$0,
$0,

%ril
%r10
%ril
%r10
%hr9
%r10

%r10
%ril

%hrii
%r10
%ril

r9,

Listing 4 : My schoolbook’s code

reduction part

// ... /*r11, r10, r9, r8x*/
movq $9223372036854775807, Jrax
movq %r9, %ri2
andq %rax, 4r9
shrq $63, Jri2
movq %r10, Yrdx
shlq $1, %ri10
orq %r10, %ri2
shlqg $1, Jrii
shrq $63, Jrdx
orq %ril, Yrdx
addq %ri2, %r8
adcq Yrdx, %r9
movq %r9, %ri2
andq %rax, 4r9
shlq $1, %ri2
adcq $0, %rs8
adcq $0, %r9
/7. ..
Listing 5 : MPFQ schoolbook’s code

reduction part

https://www.imsc.res.in/~eccl4/slides/hisil.pdf

https://www.imsc.res.in/~ecc14/slides/hisil.pdf

Test Results

Timing benchmarks were taken on an Intel Core i7-6500U processor
running Ubuntu 14.04.5 LTS with TurboBoost disabled and all cores but
one are switched-off (i.e. hyperthreading is disabled). To obtain the
executables, we used GNU-gcc version 4.8.4 with the -02 flag set and

GNU assembler version 2.24.

Karatsuba | Schoolbook (SCB) | Recursive SCB
2127 1 12 6 -
2127 _ ¢ 17 13 -
21% _ ¢ 12 10 -
22% _ ¢ - 46 40
22%6 _ ¢ - 38 34

10

21

NN NN
RN

RN]

Wwww
D0 =S

34
35
36
37
38
39

«libraries*
#define TRIAL 100000000000
int main() {

long long st, fn;

st = cpucycles();

unsigned long an[2], bn[2],

[2]

cn[2];

an[0] = (unsigned long) rand() * (unsigned long) rand()
an[1] = (unsigned long) rand() * (unsigned long) rand():
bn[0] = (unsigned long) rand() = (unsigned long) rand():
bn[1] = (unsigned long) rand() = (unsigned long) rand()
cn[0] = (unsigned long) rand() * (unsigned long) rand()
cn[1] = (unsigned long) rand() * (unsigned long) rand()
unsigned long int i;
for (i = 0; i < TRIAL; i++) {

mul127.scb_v01(an, bn, cn);

an[0] = bn[1];

an[1] = cnfo]:

bn[0] = an[1];

bn[1] = cn[1];
cn[0] = an[1];
cn[1] = bn[0];

s

fn = cpucycles();

double first = ((double) fn — st) / TRIAL;

st = cpucycles();

for (i = 0; i < TRIAL; i++) {
mull27_scb_test (an, bn, cn)
an[0] = bn[1];

an[1] = cn[0];
bn[0] = an[1];
bn[1] = cn[1];
cn[0] = an[1];
cn[1] = bn[0];

fn = cpucycles();
double second = ((double) fn — st) / TRIAL;
printf("net clock cycle : %If\n\n", first — second);
return 1;

Listing 6 : A performance

test

11

	Content of the bachelor thesis
	Studied assembly optimizations
	Test results

