
A Galois Field Arithmetic Library

Pakize ŞANAL, MSc Candidate

Supervisor: Asst. Prof. Hüseyin HIŞIL

Yasar University
Faculty of Engineering

Department of Computer Engineering

June 5, 2017

1

Outline

Content of the bachelor thesis

Studied assembly optimizations

Test results

2

Content of the bachelor thesis
A Galois Field Arithmetic Library

◮ +,−, ∗.

◮ GF (2w − c) where w = 127, 128, 255, 256 and GF (2127 − 1).

◮ Constant time AMD64 Assembly.

◮ Extensive validation and performance tests.

3

1. By scheduling of the operations
Four digits schoolbook vs. one level recursive schoolbook multiplication vs. . . .

x

a0 · b0

a1 · b0

a2 · b0

a3 · b0

a0 · b1

a1 · b1

a2 · b1

a3 · b1

a0 · b2

a1 · b2

a2 · b2

a3 · b2

a0 · b3

a1 · b3

a2 · b3

a3 · b3

a0a1

b0b1

+

a · b

a2a3

b2b3

4

SCB RSCB OSCB

2256 − c 38 - -

1. By scheduling of the operations
Four digits schoolbook vs. one level recursive schoolbook multiplication vs. . . .

x

a0 · b0a1 · b1

a1 · b0

a0 · b1

a0a1

b0b1

+

a · b

a2a3

b2b3

a2 · b2a3 · b3

a3 · b2

a2 · b3

a2 · b0a3 · b1

a3 · b0

a2 · b1

a0 · b2a1 · b3

a1 · b2

a0 · b3

4

SCB RSCB OSCB

2256 − c 38 35 -

1. By scheduling of the operations
Four digits schoolbook vs. one level recursive schoolbook multiplication vs. . . .

x

a0 · b0a1 · b1

a1 · b0

a0 · b1

a0a1

b0b1

+

a · b

a2a3

b2b3

a2 · b2a3 · b3

a3 · b2

a2 · b3

a2 · b0a3 · b1

a3 · b0

a2 · b1

a0 · b2a1 · b3

a1 · b2

a0 · b3

4

SCB RSCB OSCB

2256 − c 38 35 37

1. By scheduling of the operations
One level Karatsuba multiplication vs. one level schoolbook multiplication

x

a0 · b0a1 · b1

(a1 + a0) · (b1 + b0)

a1 · b1

a0a1

b0b1

+

a · b

a0 · b0 -

-

5

Karatsuba SCB

2127 − 1 12 6
2127 − c 17 13
2128 − c 12 10

2. By making optimization
Register optimization

1 //...

2 movq 8*0(%r8), %rax
3 mulq 8*0(%r9)
4 movq %rax , %rbx

5 movq %rdx , %rsi
6 movq 8*1(%r8), %rax

7 mulq 8*1(%r9)
8 movq %rax , %r10
9 movq %rdx , %r11

10 movq 8*1(%r8), %rax
11 mulq 8*0(%r9)

12 addq %rax , %rsi
13 adcq %rdx , %r10

14 adcq $0, %r11
15 movq 8*0(%r8), %rax
16 mulq 8*1(%r9)

17 addq %rax , %rsi
18 adcq %rdx , %r10

19 adcq $0, %r11
20 movq %rbx , 8*0(%rdi)

21 movq %rsi , 8*1(%rdi)
22 //...

Listing 1 : < GF (2255 − c), ∗ >

x

a0 · b0a1 · b1

a1 · b0

a0 · b1

a0a1

b0b1

a · b

a2a3

b2b3

a2 · b2a3 · b3

a3 · b2

a2 · b3

a2 · b0a3 · b1

a3 · b0

a2 · b1

a0 · b2a1 · b3

a1 · b2

a0 · b3

+

6

3. By using special instructions
The instruction cmovxx

Conditional Move

1 //...
2 movq %r12 , %rax

3 mulq %r14
4 movq $0, %rbp
5 cmp $0, %r13

6 cmovz %rbp , %r14
7 cmp $0, %r15

8 cmovz %rbp , %r12
9 andq %r13 , %r15

10 addq %r12 , %rdx
11 adcq $0, %rbp
12 addq %r14 , %rdx

13 adcq %r15 , %rbp
14 //...

Listing 2 : < GF (2128 − c), ∗ >

x

a12 · b14

r12

r14

+

a · b

r13

r15

r13.r14

r12 · r15

?

7

if r13 = 0 then

Return 0.
else

Return r14.
end

if r12 = 0 then

Return 0.
else

Return r15.
end

3. By using special instructions
The instruction btxx

Bit Test and Reset

1 //...
2 /*r11, r10, r9, r8*/

3 shlq $1, %r11
4 btrq $63, %r10

5 adcq $0, %r11
6 shlq $1, %r10
7 btrq $63, %r9

8 adcq $0, %r10
9

10 addq %r8, %r10
11 adcq %r9, %r11
12

13 btrq $63, %r11
14 adcq $0, %r10

15 adcq $0, %r11
16 //...

Listing 3 :
< GF (2127 − 1), ∗ >

r10r11 r8r9

r10r11

r8r9

r10r11

+

r10r11

+

r10r11

Faster compact Diffie-Hellman: Endomorphisms on the x−line

C. Costello, H. Hisil, and B. Smith

8

3. By using special instructions
Comparing with the MPFQ library < GF (2127 − 1), ∗ >

33 instructions, 6 clock cyles

1 //...
2 /*r11, r10, r9, r8*/

3 shlq $1, %r11
4 btrq $63, %r10

5 adcq $0, %r11
6 shlq $1, %r10

7 btrq $63, %r9
8 adcq $0, %r10
9

10 addq %r8, %r10
11 adcq %r9, %r11

12

13 btrq $63, %r11
14 adcq $0, %r10

15 adcq $0, %r11
16 //...

Listing 4 : My schoolbook’s code

reduction part

45 instructions, 9 clock cycles

1 //... /*r11, r10, r9, r8*/

2 movq $9223372036854775807, %rax
3 movq %r9 , %r12

4 andq %rax , %r9
5 shrq $63 , %r12
6 movq %r10 , %rdx

7 shlq $1, %r10
8 orq %r10 , %r12

9 shlq $1, %r11
10 shrq $63 , %rdx

11 orq %r11 , %rdx
12 addq %r12 , %r8
13 adcq %rdx , %r9

14 movq %r9 , %r12
15 andq %rax , %r9

16 shlq $1, %r12
17 adcq $0, %r8
18 adcq $0, %r9

19 //...

Listing 5 : MPFQ schoolbook’s code

reduction part

https://www.imsc.res.in/~ecc14/slides/hisil.pdf

9

https://www.imsc.res.in/~ecc14/slides/hisil.pdf

Test Results

Timing benchmarks were taken on an Intel Core i7-6500U processor
running Ubuntu 14.04.5 LTS with TurboBoost disabled and all cores but
one are switched-off (i.e. hyperthreading is disabled). To obtain the
executables, we used GNU-gcc version 4.8.4 with the -O2 flag set and
GNU assembler version 2.24.

Karatsuba Schoolbook (SCB) Recursive SCB

2127 − 1 12 6 -
2127 − c 17 13 -
2128 − c 12 10 -
2255 − c - 46 40
2256 − c - 38 34

10

1 /∗ l i b r a r i e s∗/
2 #d e f i n e TRIAL 100000000000
3 i n t main () {
4 l ong l ong st , f n ;
5 s t = c p u c y c l e s () ;
6 un s i gn ed l ong an [2] , bn [2] , cn [2] ;
7 an [0] = (un s i gn ed l ong) rand () ∗ (un s i gn ed l ong) rand () ;
8 an [1] = (un s i gn ed l ong) rand () ∗ (un s i gn ed l ong) rand () ;
9 bn [0] = (un s i gn ed l ong) rand () ∗ (un s i gn ed l ong) rand () ;

10 bn [1] = (un s i gn ed l ong) rand () ∗ (un s i gn ed l ong) rand () ;
11 cn [0] = (un s i gn ed l ong) rand () ∗ (un s i gn ed l ong) rand () ;
12 cn [1] = (un s i gn ed l ong) rand () ∗ (un s i gn ed l ong) rand () ;
13 un s i gn ed l ong i n t i ;
14 f o r (i = 0 ; i < TRIAL ; i++) {
15 mul127 scb v01 (an , bn , cn) ;
16 an [0] = bn [1] ;
17 an [1] = cn [0] ;
18 bn [0] = an [1] ;
19 bn [1] = cn [1] ;
20 cn [0] = an [1] ;
21 cn [1] = bn [0] ;
22 }
23 fn = c p u c y c l e s () ;
24 doub l e f i r s t = ((doub l e) fn − s t) / TRIAL ;
25 s t = c p u c y c l e s () ;
26 f o r (i = 0 ; i < TRIAL ; i++) {
27 mu l 127 s c b t e s t (an , bn , cn) ;
28 an [0] = bn [1] ;
29 an [1] = cn [0] ;
30 bn [0] = an [1] ;
31 bn [1] = cn [1] ;
32 cn [0] = an [1] ;
33 cn [1] = bn [0] ;
34 }
35 fn = c p u c y c l e s () ;
36 doub l e second = ((doub l e) fn − s t) / TRIAL ;
37 p r i n t f (” net c l o c k c y c l e : %l f\n\n” , f i r s t − second) ;
38 r e t u r n 1 ;
39 }

Listing 6 : A performance test

11

	Content of the bachelor thesis
	Studied assembly optimizations
	Test results

